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Slope-semistability

If C is a curve, and E is a vector bundle on C, we set its slope as

We say that E is semistable if (E") < p(E) for any subsheaf
0#E CE.
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Slope-semistability

If C is a curve, and E is a vector bundle on C, we set its slope as

We say that E is semistable if (E") < p(E) for any subsheaf
0#E CE.

Theorem (Harder—Narasimhan)

If E is a vector bundle on C, there exists a canonical filtration
O0=ECEGCERG --CE =E

such that each quotient F; = E;/E;_1 is semistable, and
w(F1) > p(F2) > -+ > p(Fn).
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Bridgeland stability

A Bridgeland stability condition on a variety X is 0 = (Z,.A):
@ A C DP(X) is a heart of a bounded t-structure,
Q@ Z: KM™™(X) — C is a central charge.

We impose:

© Z maps A to the upper half-space.
@ Filtrations by semistable objects with respect to

_ —ReZ(E)
:U'J( )_ ImZ(E) :

If Cis a curve: take A = Coh(C), Z(E) = —deg E +irkE.




Bridgeland stability
[e]e] lelelelelele]e]

Stability manifold

Theorem (Bridgeland, 2007)

The set of stability conditions Stab(X) carries a natural topology,
and the forgetful map

Z: Stab(X) — Homz(K(X),C), o=(Z,A)—~Z

is a local homeomorphism.

Upshot: Stab(X) is a complex manifold.
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A subtle point

If X is a smooth, projective variety, then Stab(X) # @.
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A subtle point

If X is a smooth, projective variety, then Stab(X) # @.

What do we know about Stab(X)?

e dim X = 1. Completely understood (Bridgeland, Macr,
Okada).

e dim X = 3: Many known examples: Fano, Abelian, some CY3,
products of curves, ...

@ dim X > 4: Only sporadic examples.

Technical issue: constructing hearts is hard!

Proposition (Toda)

If dim X > 2, then there is no stability condition with heart Coh X.
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On surfaces

From now on: X = S is a surface.

Theorem (Arcara—Bertram, 2013)

For any 5 € NS(S)r, w € Amp(S)r, there is a stability condition
08w = (Zsws Apw) € Stab(S), with

w2
Zp(—) = —chi3 (=) + -cho(=) + iw.chi (=).

and ch?(E) = ch(E).e P,
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On surfaces

From now on: X = S is a surface.

Theorem (Arcara—Bertram, 2013)

For any 5 € NS(S)r, w € Amp(S)r, there is a stability condition
08w = (Zsws Apw) € Stab(S), with

w2
Zp(—) = —chi3 (=) + -cho(=) + iw.chi (=).

and ch?(E) = ch(E).e P,

Note: Ag,, is a tilt of Coh(S). It depends on the ray Ry ow, and

on B.w/Vw?.
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Describe the limit points of {05, }8..-
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Describe the limit points of {05, }8..-

We write 03 ) to denote a limit point with central charge Zg ). By
continuity: A € Nef(S)g.

Today: Focus on the case A = f*n, f: S — T birational, T
normal, projective surface.
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Known cases

This question has been tackled extensively in various situations:

o (Bridgeland, 2008) S a K3 surface, and T with ADE
singularities.

o (Toda, 2013-2014) f: S — T blow-up of a smooth point.

o (Tramel-Xia, 2022) f: S — T contracting a single
(—n)-curve.
(

@ (Chou, 2024) f: S — T contracting a single ADE chain.
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Existence

Theorem (V., 2025)

Let f: S — T be as before. Assume that each connected
component of Exc(f) is:

© a smooth, rational curve;
@ an A, chain; or
© a chain G U---U C, of smooth rational curves, n > 2 with
C12, C,2 < -2, C,-2 < —3 otherwise.
Then, there exists U C NS(S)r open such that G+, exists for
any B € U and any n € Amp(T)r.
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Existence

Theorem (V., 2025)

Let f: S — T be as before. Assume that each connected
component of Exc(f) is:

© a smooth, rational curve;
@ an A, chain; or
© a chain G U---U C, of smooth rational curves, n > 2 with
C12, C,2 < -2, C,-2 < —3 otherwise.
Then, there exists U C NS(S)r open such that G+, exists for
any B € U and any n € Amp(T)r.

Two key features:
@ New singularities allowed for T.

@ Many singularities simultaneously.
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Other singularities?

Note from the previous theorem that T is only allowed to have
certain cyclic quotient singularities.

Which singularities is T allowed to have, so that a limit G ¢+,
exists?
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Other singularities?

Note from the previous theorem that T is only allowed to have
certain cyclic quotient singularities.

Which singularities is T allowed to have, so that a limit G ¢+,
exists?

\,

Theorem (V., 2025)

Let f: S — T be as before. Assume that G ¢+, exists in Stab(S)
for some 3 € NS(S)r, n € Amp(T)r. Then, we have that Exc(f)
does not contain smooth curves of positive genus.

.
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Idea of the proof

In the previous results, the key difficulty was to construct the heart
Ag gy for G ¢+ Two issues:

@ The construction is complicated! (Requires double tilting.)

@ Not suitable to prove non-existence.
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Idea of the proof

In the previous results, the key difficulty was to construct the heart
Ag gy for G ¢+ Two issues:
@ The construction is complicated! (Requires double tilting.)

@ Not suitable to prove non-existence.

Instead: We show that there is skewed heart C3 v, depending only
on B and V = w?, that is shared among all 08 With w2=V.

As V = (f*n)? > 0, we get that Cg,y is also the heart for G+, if
it exists.
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Moduli spaces

Given o = (Z,.A), we get a notion of semistability on A, and so on
D5(X). Fix v € K™™(X), and consider

{E : E € A, o-semistable of class v}.

Extend this to families: an object & € D?(X x T) such that &|x
is o-semistable of class v for t € T. This defines a stack M, (v).
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Moduli spaces

Given o = (Z,.A), we get a notion of semistability on A, and so on
D5(X). Fix v € K™™(X), and consider

{E : E € A, o-semistable of class v}.

Extend this to families: an object & € D?(X x T) such that &|x
is o-semistable of class v for t € T. This defines a stack M, (v).

Theorem (Lieblich, Toda, Alper—Halpern-Leistner-Heinloth, ...)

Under mild assumptions, MM, (v) is an algebraic stack admitting a
proper good moduli space M,(v).

Describe the moduli spaces M,(v).
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Wall-and-chamber

Usually, there is a special og € Stab(X) such that M,,(v) is

well-understood: large volume limit, geometric chamber. How to
relate M, (v) and My, (v)?
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Wall-and-chamber

Usually, there is a special og € Stab(X) such that M,,(v) is

well-understood: large volume limit, geometric chamber. How to
relate M, (v) and My, (v)?

Theorem (Bridgeland, 2008)

There is a wall-and-chamber decomposition on Stab(X): a
collection of walls {W;}, dividing Stab(X) into chambers. If 0,0’
lie in the same chamber, then M,(v) = M, (v).
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Wall-and-chamber

Usually, there is a special og € Stab(X) such that M,,(v) is
well-understood: large volume limit, geometric chamber. How to
relate M, (v) and My, (v)?

Theorem (Bridgeland, 2008)

There is a wall-and-chamber decomposition on Stab(X): a
collection of walls {W;}, dividing Stab(X) into chambers. If 0,0’
lie in the same chamber, then M,(v) = M, (v).

Strategy:
@ Pick a path o; from og to 01 = 0.
@ Analyze what happens at each wall.
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At a (simple) wall

Each wall is associated to a decomposition v = u + w.

Stab(X)

[ ) [ )
o1 o2

w

@ Onoy: pi(u) < pi(w), only 0 - U — E; — W — 0 allowed.
@ On oy po(u) > pa(w), only 0 - W — E; — U — 0 allowed.
Upshot: To go from M,, to M,, we remove the {E;} and add the

{E2}
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Technical issue: How to describe this at the level of schemes:

@ For each U € M,(u), W € M,(w), look at PExt*(U, W).
This can often be constructed in families.

e For each irreducible component N C M,,(v): blow-up the
destabilized locus, perform an elementary modification.

@ Glue the pieces appropriately.
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Tramel-Xia

Consider f: S — T contracting a (—n)-curve. Tramel-Xia
constructed stability conditions o £+,
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Tramel-Xia

Consider f: S — T contracting a (—n)-curve. Tramel-Xia
constructed stability conditions o £+,

There is a single wall passing through g ¢+, with respect to
v = [pt].

On one side: geometric chamber

0—0c— 0, — Oc(—1)[1] — 0.
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Tramel-Xia

Consider f: S — T contracting a (—n)-curve. Tramel-Xia
constructed stability conditions o £+,

There is a single wall passing through g ¢+, with respect to
v = [pt].

On one side: geometric chamber

0—0c— 0, — Oc(—1)[1] — 0.

So, on the other side:
0— Oc(-1)[1] - E' = Oc — 0.

These are parametrized by PExt?(0¢, Oc(—1)) = P 1.



Moduli spaces and wall-crossing
0000080

Intersecting curves

Now, assume that f: S — T contracts two smooth, rational
curves (7, G, intersecting on a point. We construct stability
conditions o, ¢, by deforming Tg ;).




Moduli spaces and wall-crossing
0000080

Intersecting curves

Now, assume that f: S — T contracts two smooth, rational
curves (7, G, intersecting on a point. We construct stability
conditions o, ¢, by deforming Tg ;).

What about the other chambers?



Theorem (V., 2025)
The moduli space M has three irreducible components: S,
Bl,P"~1, and P11 Tm=3, glued as follows:
@ The exceptional divisor E C BlptIP’”l_l glues as a linear
subspace of Pm+m=3,
@ The curve C; € S glues in BlptIP’"l_l as the strict transform of
a rational normal curve passing through the blown-up point.

@ The curve C; € S glues in Pmtm—1 55 5 rational normal curve
in a complementary subspace of E.

N/
AN

s Bl P2 P3

Moduli spaces and wall-crossing
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v

Figure: Irreducible components for n; = n, = 3.
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A subtle point

So far: a moduli space M, together with a map M — M,(v),
bijective on closed points. How to decide whether this is an
isomorphism?
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A subtle point

So far: a moduli space M, together with a map M — M,(v),
bijective on closed points. How to decide whether this is an
isomorphism?

If M,(v) is reduced, this is easy: suffices to check M — M, (v)
induces isomorphisms on tangent vectors. Upshot: need to
understand local structure.
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Deformation theory |

Start by looking at the stack 9,(v). We want to understand
infinitesimal deformations of £ € D?(X) o-semistable.

Proposition (Lieblich, 2006)

Assume that E is gluable. Then:
e Automorphisms: Aut(E) C Hom(E, E).
o Tangent space: Ext(E, E).
o Obstruction space: Ext?(E,E).
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Deformation theory |

Start by looking at the stack 9,(v). We want to understand
infinitesimal deformations of £ € D?(X) o-semistable.

Proposition (Lieblich, 2006)

Assume that E is gluable. Then:
e Automorphisms: Aut(E) C Hom(E, E).
o Tangent space: Ext(E, E).
o Obstruction space: Ext?(E,E).

If Ext?(E, E) = 0, this is enough to understand the local picture.
In general: deformations are controlled by a formal map

—_—

r: Ext'(E, E) — Ext?(E, E).
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Differential graded Lie algebras

The map & is determined by the differential graded Lie algebra
RHom(E, E).
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Differential graded Lie algebras

The map & is determined by the differential graded Lie algebra
RHom(E, E).
How to compute it? Various options:
@ Replace E with a complex of injectives /®; look at
Hom(/®, /*).
@ Dolbeault resolution.

In our case: Cech cocycles.
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Deformation theory Il

So far: local structure of the stack 9, (v). How do we go back to
the algebraic space M,(v)?
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Deformation theory Il

So far: local structure of the stack 9, (v). How do we go back to
the algebraic space M,(v)?

Idea (Luna, Alper-Hall-Rydh): “étale slice”

peM +——  E € D’(X) polystable
Local structure +— RHom(E, E)

Oup < (CIEXE(E, E)]}/1YAHE)
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Proposition (V., 2025)

In the previous setup, let E € Db(S) be the object corresponding
to p=Pn+tm=30SNBl,P""t C M. Then

é)M ~ C[[Pla---;Pnl—%CIl,---,an—lyf]]
P (p1q1r7""pn1*2q1r7 q2ra"'7qn271r)
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Proposition (V., 2025)

In the previous setup, let E € Db(S) be the object corresponding
to p=Pn+tm=30SNBl,P""t C M. Then

é)M ~ C[[Pla---;Pnl—%CIl,---,an—lyf]]
P (p1q1r7""pn1*2q1r7 q2ra"'7qn271r)

In particular: M is reduced at p. Here ﬁM,p is not cut out by
quadrics!
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Future directions

@ Sharp conditions for singularities on T.
@ What about the rest of singularities?

@ Relation with stability conditions on T.
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Thank you!
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