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Slope-semistability

If C is a curve, and E is a vector bundle on C , we set its slope as

µ(E ) =
deg E

rkE
.

We say that E is semistable if µ(E ′) ≤ µ(E ) for any subsheaf
0 ̸= E ′ ⊂ E .

Theorem (Harder–Narasimhan)

If E is a vector bundle on C, there exists a canonical filtration

0 = E0 ⊊ E1 ⊊ E2 ⊊ · · · ⊊ En = E ,

such that each quotient Fi = Ei/Ei−1 is semistable, and
µ(F1) > µ(F2) > · · · > µ(Fn).



Bridgeland stability Moduli spaces and wall-crossing Local structure

Slope-semistability

If C is a curve, and E is a vector bundle on C , we set its slope as

µ(E ) =
deg E

rkE
.

We say that E is semistable if µ(E ′) ≤ µ(E ) for any subsheaf
0 ̸= E ′ ⊂ E .

Theorem (Harder–Narasimhan)

If E is a vector bundle on C, there exists a canonical filtration

0 = E0 ⊊ E1 ⊊ E2 ⊊ · · · ⊊ En = E ,

such that each quotient Fi = Ei/Ei−1 is semistable, and
µ(F1) > µ(F2) > · · · > µ(Fn).



Bridgeland stability Moduli spaces and wall-crossing Local structure

Bridgeland stability

Definition

A Bridgeland stability condition on a variety X is σ = (Z ,A):
1 A ⊂ Db(X ) is a heart of a bounded t-structure,

2 Z : Knum(X )→ C is a central charge.

We impose:

1 Z maps A to the upper half-space.

2 Filtrations by semistable objects with respect to

µσ(E ) =
−ReZ (E )

ImZ (E )
.

Example

If C is a curve: take A = Coh(C ), Z (E ) = − deg E + i rkE .
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Stability manifold

Theorem (Bridgeland, 2007)

The set of stability conditions Stab(X ) carries a natural topology,
and the forgetful map

Z : Stab(X )→ HomZ(K (X ),C), σ = (Z ,A) 7→ Z

is a local homeomorphism.

Upshot: Stab(X ) is a complex manifold.
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A subtle point

Conjecture

If X is a smooth, projective variety, then Stab(X ) ̸= ∅.

What do we know about Stab(X )?

dimX = 1: Completely understood (Bridgeland, Macr̀ı,
Okada).

dimX = 3: Many known examples: Fano, Abelian, some CY3,
products of curves, . . .

dimX ≥ 4: Only sporadic examples.

Technical issue: constructing hearts is hard!

Proposition (Toda)

If dimX ≥ 2, then there is no stability condition with heart CohX.
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On surfaces

From now on: X = S is a surface.

Theorem (Arcara–Bertram, 2013)

For any β ∈ NS(S)R, ω ∈ Amp(S)R, there is a stability condition
σβ,ω = (Zβ,ω,Aβ,ω) ∈ Stab(S), with

Zβ,ω(−) = −chβ2 (−) +
ω2

2
ch0(−) + iω.chβ1 (−).

and chβ(E ) = ch(E ).e−β.

Note: Aβ,ω is a tilt of Coh(S). It depends on the ray R>0ω, and

on β.ω/
√
ω2.
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Question

Describe the limit points of {σβ,ω}β,ω.

We write σβ,λ to denote a limit point with central charge Zβ,λ. By
continuity: λ ∈ Nef(S)R.

Today: Focus on the case λ = f ∗η, f : S → T birational, T
normal, projective surface.
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Known cases

This question has been tackled extensively in various situations:

(Bridgeland, 2008) S a K3 surface, and T with ADE
singularities.

(Toda, 2013–2014) f : S → T blow-up of a smooth point.

(Tramel–Xia, 2022) f : S → T contracting a single
(−n)-curve.
(Chou, 2024) f : S → T contracting a single ADE chain.
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Existence

Theorem (V., 2025)

Let f : S → T be as before. Assume that each connected
component of Exc(f ) is:

1 a smooth, rational curve;

2 an An chain; or

3 a chain C1 ∪ · · · ∪ Cn of smooth rational curves, n ≥ 2 with
C 2
1 ,C

2
r ≤ −2, C 2

i ≤ −3 otherwise.

Then, there exists U ⊂ NS(S)R open such that σβ,f ∗η exists for
any β ∈ U and any η ∈ Amp(T )R.

Two key features:

New singularities allowed for T .

Many singularities simultaneously.
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Other singularities?

Note from the previous theorem that T is only allowed to have
certain cyclic quotient singularities.

Question

Which singularities is T allowed to have, so that a limit σβ,f ∗η

exists?

Theorem (V., 2025)

Let f : S → T be as before. Assume that σβ,f ∗η exists in Stab(S)
for some β ∈ NS(S)R, η ∈ Amp(T )R. Then, we have that Exc(f )
does not contain smooth curves of positive genus.
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Idea of the proof

In the previous results, the key difficulty was to construct the heart
Aβ,f ∗η for σβ,f ∗η. Two issues:

The construction is complicated! (Requires double tilting.)

Not suitable to prove non-existence.

Instead: We show that there is skewed heart Cβ,V , depending only
on β and V = ω2, that is shared among all σβ,ω with ω2 = V .

As V = (f ∗η)2 > 0, we get that Cβ,V is also the heart for σβ,f ∗η, if
it exists.
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Moduli spaces

Given σ = (Z ,A), we get a notion of semistability on A, and so on
Db(X ). Fix v ∈ Knum(X ), and consider

{E : E ∈ A, σ-semistable of class v}.

Extend this to families: an object E ∈ Db(X ×T ) such that E |X×t

is σ-semistable of class v for t ∈ T . This defines a stack Mσ(v).

Theorem (Lieblich, Toda, Alper–Halpern-Leistner–Heinloth, . . . )

Under mild assumptions, Mσ(v) is an algebraic stack admitting a
proper good moduli space Mσ(v).

Question

Describe the moduli spaces Mσ(v).
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Wall-and-chamber

Usually, there is a special σ0 ∈ Stab(X ) such that Mσ0(v) is
well-understood: large volume limit, geometric chamber. How to
relate Mσ(v) and Mσ0(v)?

Theorem (Bridgeland, 2008)

There is a wall-and-chamber decomposition on Stab(X ): a
collection of walls {Wi}, dividing Stab(X ) into chambers. If σ, σ′

lie in the same chamber, then Mσ(v) = Mσ′(v).

Strategy:

1 Pick a path σt from σ0 to σ1 = σ.

2 Analyze what happens at each wall.
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At a (simple) wall

Each wall is associated to a decomposition v = u + w .

W

Stab(X )

σ1 σ2

On σ1: µ1(u) < µ1(w), only 0→ U → E1 →W → 0 allowed.

On σ2: µ2(u) > µ2(w), only 0→W → E2 → U → 0 allowed.

Upshot: To go from Mσ1 to Mσ2 we remove the {E1} and add the
{E2}.
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Technical issue: How to describe this at the level of schemes:

For each U ∈ Mσ(u), W ∈ Mσ(w), look at PExt1(U,W ).
This can often be constructed in families.

For each irreducible component N ⊂ Mσ1(v): blow-up the
destabilized locus, perform an elementary modification.

Glue the pieces appropriately.
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Tramel–Xia

Consider f : S → T contracting a (−n)-curve. Tramel–Xia
constructed stability conditions σβ,f ∗η

Fact

There is a single wall passing through σβ,f ∗η with respect to
v = [pt].

On one side: geometric chamber

0→ OC → Op → OC (−1)[1]→ 0.

So, on the other side:

0→ OC (−1)[1]→ E ′ → OC → 0.

These are parametrized by PExt2(OC ,OC (−1)) ∼= Pn−1.
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Intersecting curves

Now, assume that f : S → T contracts two smooth, rational
curves C1,C2 intersecting on a point. We construct stability
conditions σϵ1,ϵ2 by deforming σβ,f ∗η.

ϵ1

ϵ2

S ∪C2 Pn2−1

S
S ∪C1 Pn1−1

T1

T2

What about the other chambers?
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Theorem (V., 2025)

The moduli space M has three irreducible components: S,
BlptPn1−1, and Pn1+n2−3, glued as follows:

The exceptional divisor E ⊂ BlptPn1−1 glues as a linear
subspace of Pn1+n2−3.

The curve C1 ∈ S glues in BlptPn1−1 as the strict transform of
a rational normal curve passing through the blown-up point.

The curve C2 ∈ S glues in Pn1+n2−1 as a rational normal curve
in a complementary subspace of E .

S BlptP2 P3

Figure: Irreducible components for n1 = n2 = 3.
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A subtle point

So far: a moduli space M, together with a map M → Mσ(v),
bijective on closed points. How to decide whether this is an
isomorphism?

If Mσ(v) is reduced, this is easy: suffices to check M → Mσ(v)
induces isomorphisms on tangent vectors. Upshot: need to
understand local structure.
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Deformation theory I

Start by looking at the stack Mσ(v). We want to understand
infinitesimal deformations of E ∈ Db(X ) σ-semistable.

Proposition (Lieblich, 2006)

Assume that E is gluable. Then:

Automorphisms: Aut(E ) ⊂ Hom(E ,E ).

Tangent space: Ext1(E ,E ).

Obstruction space: Ext2(E ,E ).

If Ext2(E ,E ) = 0, this is enough to understand the local picture.
In general: deformations are controlled by a formal map

κ : ̂Ext1(E ,E )→ ̂Ext2(E ,E ).
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Differential graded Lie algebras

The map κ is determined by the differential graded Lie algebra
R Hom(E ,E ).

How to compute it? Various options:

Replace E with a complex of injectives I •; look at
Hom(I •, I •).

Dolbeault resolution.

In our case: Čech cocycles.
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Deformation theory II

So far: local structure of the stack Mσ(v). How do we go back to
the algebraic space Mσ(v)?

Idea (Luna, Alper–Hall–Rydh): “étale slice”

p ∈ M ←→ E ∈ Db(X ) polystable

Local structure ←→ R Hom(E ,E )

ÔM,p ←→ (C[[Ext1(E ,E )]]/I )Aut(E)
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Proposition (V., 2025)

In the previous setup, let E ∈ Db(S) be the object corresponding
to p = Pn1+n2−3 ∩ S ∩ BlptPn1−1 ⊂ M. Then

ÔM,p
∼=

C[[p1, . . . , pn1−2, q1, . . . , qn2−1, r ]]

(p1q1r , . . . , pn1−2q1r , q2r , . . . , qn2−1r)
.

In particular: M is reduced at p. Here ÔM,p is not cut out by
quadrics!
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Future directions

Sharp conditions for singularities on T .

What about the rest of singularities?

Relation with stability conditions on T .
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Thank you!
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