# Stability conditions on surfaces, contractions of curves, and moduli spaces

Nicolás Vilches

Columbia University

October 24<sup>th</sup>, 2025

# Slope-semistability

If C is a curve, and E is a vector bundle on C, we set its slope as

$$\mu(E) = \frac{\deg E}{\operatorname{rk} E}.$$

We say that E is semistable if  $\mu(E') \leq \mu(E)$  for any subsheaf  $0 \neq E' \subset E$ .

# Slope-semistability

If C is a curve, and E is a vector bundle on C, we set its *slope* as

$$\mu(E) = \frac{\deg E}{\operatorname{rk} E}.$$

We say that E is *semistable* if  $\mu(E') \leq \mu(E)$  for any subsheaf  $0 \neq E' \subset E$ .

#### Theorem (Harder-Narasimhan)

If E is a vector bundle on C, there exists a canonical filtration

$$0 = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq \cdots \subsetneq E_n = E,$$

such that each quotient  $F_i = E_i/E_{i-1}$  is semistable, and  $\mu(F_1) > \mu(F_2) > \cdots > \mu(F_n)$ .

# Bridgeland stability

#### Definition

A Bridgeland stability condition on a variety X is  $\sigma = (Z, A)$ :

- **1**  $\mathcal{A} \subset \mathrm{D}^b(X)$  is a heart of a bounded t-structure,
- **2**  $Z: K^{\text{num}}(X) \to \mathbb{C}$  is a central charge.

We impose:

- **1** Z maps A to the upper half-space.
- Filtrations by semistable objects with respect to

$$\mu_{\sigma}(E) = \frac{-\operatorname{Re} Z(E)}{\operatorname{Im} Z(E)}.$$

#### Example

If C is a curve: take A = Coh(C),  $Z(E) = - \deg E + i \operatorname{rk} E$ .

# Stability manifold

#### Theorem (Bridgeland, 2007)

The set of stability conditions Stab(X) carries a natural topology, and the forgetful map

$$\mathcal{Z}$$
: Stab $(X) \to \operatorname{\mathsf{Hom}}_{\mathbb{Z}}(K(X),\mathbb{C}), \qquad \sigma = (Z,\mathcal{A}) \mapsto Z$ 

is a local homeomorphism.

Upshot: Stab(X) is a complex manifold.

# A subtle point

### Conjecture

If X is a smooth, projective variety, then  $Stab(X) \neq \emptyset$ .

## A subtle point

#### Conjecture

If X is a smooth, projective variety, then  $Stab(X) \neq \emptyset$ .

What do we know about Stab(X)?

- dim X = 1: Completely understood (Bridgeland, Macrì, Okada).
- dim X = 3: Many known examples: Fano, Abelian, some CY3, products of curves, . . .
- dim  $X \ge 4$ : Only sporadic examples.

Technical issue: constructing hearts is hard!

## Proposition (Toda)

If dim  $X \ge 2$ , then there is no stability condition with heart Coh X.

### On surfaces

From now on: X = S is a surface.

### Theorem (Arcara–Bertram, 2013)

For any  $\beta \in \mathsf{NS}(S)_{\mathbb{R}}$ ,  $\omega \in \mathsf{Amp}(S)_{\mathbb{R}}$ , there is a stability condition  $\sigma_{\beta,\omega} = (Z_{\beta,\omega}, \mathcal{A}_{\beta,\omega}) \in \mathsf{Stab}(S)$ , with

$$Z_{\beta,\omega}(-) = -\operatorname{ch}_2^{\beta}(-) + \frac{\omega^2}{2}\operatorname{ch}_0(-) + i\omega.\operatorname{ch}_1^{\beta}(-).$$

and 
$$\operatorname{ch}^{\beta}(E) = \operatorname{ch}(E).e^{-\beta}$$
.

### On surfaces

From now on: X = S is a surface.

### Theorem (Arcara–Bertram, 2013)

For any  $\beta \in NS(S)_{\mathbb{R}}$ ,  $\omega \in Amp(S)_{\mathbb{R}}$ , there is a stability condition  $\sigma_{\beta,\omega} = (Z_{\beta,\omega}, \mathcal{A}_{\beta,\omega}) \in Stab(S)$ , with

$$Z_{\beta,\omega}(-) = -\operatorname{ch}_2^{\beta}(-) + \frac{\omega^2}{2}\operatorname{ch}_0(-) + i\omega.\operatorname{ch}_1^{\beta}(-).$$

and  $\operatorname{ch}^{\beta}(E) = \operatorname{ch}(E).e^{-\beta}$ .

Note:  $\mathcal{A}_{\beta,\omega}$  is a tilt of  $\mathsf{Coh}(S)$ . It depends on the ray  $\mathbb{R}_{>0}\omega$ , and on  $\beta.\omega/\sqrt{\omega^2}$ .

## Question

Describe the limit points of  $\{\sigma_{\beta,\omega}\}_{\beta,\omega}$ .

#### Question

Describe the limit points of  $\{\sigma_{\beta,\omega}\}_{\beta,\omega}$ .

We write  $\overline{\sigma}_{\beta,\lambda}$  to denote a limit point with central charge  $Z_{\beta,\lambda}$ . By continuity:  $\lambda \in \text{Nef}(S)_{\mathbb{R}}$ .

Today: Focus on the case  $\lambda = f^*\eta$ ,  $f: S \to T$  birational, T normal, projective surface.

## Known cases

This question has been tackled extensively in various situations:

- (Bridgeland, 2008) S a K3 surface, and T with ADE singularities.
- (Toda, 2013–2014)  $f: S \to T$  blow-up of a smooth point.
- (Tramel–Xia, 2022)  $f: S \to T$  contracting a single (-n)-curve.
- (Chou, 2024)  $f: S \to T$  contracting a single ADE chain.

#### Existence

#### Theorem (V., 2025)

Let  $f: S \to T$  be as before. Assume that each connected component of Exc(f) is:

- a smooth, rational curve;
- $\bigcirc$  an  $A_n$  chain; or
- **3** a chain  $C_1 \cup \cdots \cup C_n$  of smooth rational curves,  $n \geq 2$  with  $C_1^2, C_r^2 \leq -2, C_i^2 \leq -3$  otherwise.

Then, there exists  $U \subset \mathsf{NS}(S)_{\mathbb{R}}$  open such that  $\overline{\sigma}_{\beta,f^*\eta}$  exists for any  $\beta \in U$  and any  $\eta \in \mathsf{Amp}(T)_{\mathbb{R}}$ .

#### Existence

#### Theorem (V., 2025)

Let  $f: S \to T$  be as before. Assume that each connected component of Exc(f) is:

- a smooth, rational curve;
- $\bigcirc$  an  $A_n$  chain; or
- **3** a chain  $C_1 \cup \cdots \cup C_n$  of smooth rational curves,  $n \geq 2$  with  $C_1^2, C_r^2 \leq -2, C_i^2 \leq -3$  otherwise.

Then, there exists  $U \subset \mathsf{NS}(S)_{\mathbb{R}}$  open such that  $\overline{\sigma}_{\beta,f^*\eta}$  exists for any  $\beta \in U$  and any  $\eta \in \mathsf{Amp}(T)_{\mathbb{R}}$ .

#### Two key features:

- New singularities allowed for T.
- Many singularities simultaneously.

# Other singularities?

Note from the previous theorem that T is only allowed to have certain cyclic quotient singularities.

#### Question

Which singularities is T allowed to have, so that a limit  $\overline{\sigma}_{\beta,f^*n}$ exists?

# Other singularities?

Note from the previous theorem that T is only allowed to have certain cyclic quotient singularities.

#### Question

Which singularities is T allowed to have, so that a limit  $\overline{\sigma}_{\beta,f^*\eta}$  exists?

#### Theorem (V., 2025)

Let  $f: S \to T$  be as before. Assume that  $\overline{\sigma}_{\beta,f^*\eta}$  exists in  $\mathsf{Stab}(S)$  for some  $\beta \in \mathsf{NS}(S)_{\mathbb{R}}$ ,  $\eta \in \mathsf{Amp}(T)_{\mathbb{R}}$ . Then, we have that  $\mathsf{Exc}(f)$  does not contain smooth curves of positive genus.

# Idea of the proof

In the previous results, the key difficulty was to *construct* the heart  $\mathcal{A}_{\beta,f^*n}$  for  $\overline{\sigma}_{\beta,f^*n}$ . Two issues:

- The construction is complicated! (Requires double tilting.)
- Not suitable to prove *non-existence*.

# Idea of the proof

In the previous results, the key difficulty was to *construct* the heart  $\overline{\mathcal{A}}_{\beta,f^*\eta}$  for  $\overline{\sigma}_{\beta,f^*\eta}$ . Two issues:

- The construction is complicated! (Requires double tilting.)
- Not suitable to prove non-existence.

Instead: We show that there is skewed heart  $C_{\beta,V}$ , depending only on  $\beta$  and  $V=\omega^2$ , that is shared among all  $\sigma_{\beta,\omega}$  with  $\omega^2=V$ .

As  $V = (f^*\eta)^2 > 0$ , we get that  $\mathcal{C}_{\beta,V}$  is also the heart for  $\overline{\sigma}_{\beta,f^*\eta}$ , if it exists.

## Moduli spaces

Given  $\sigma = (Z, A)$ , we get a notion of *semistability* on A, and so on  $D^b(X)$ . Fix  $v \in K^{num}(X)$ , and consider

 $\{E: E \in \mathcal{A}, \ \sigma\text{-semistable of class } v\}.$ 

Extend this to families: an object  $\mathscr{E} \in \mathrm{D}^b(X \times T)$  such that  $\mathscr{E}|_{X \times t}$  is  $\sigma$ -semistable of class v for  $t \in T$ . This defines a stack  $\mathfrak{M}_{\sigma}(v)$ .

## Moduli spaces

Given  $\sigma = (Z, A)$ , we get a notion of *semistability* on A, and so on  $D^b(X)$ . Fix  $v \in K^{num}(X)$ , and consider

 $\{E: E \in \mathcal{A}, \ \sigma$ -semistable of class  $v\}$ .

Extend this to families: an object  $\mathscr{E} \in \mathrm{D}^b(X \times T)$  such that  $\mathscr{E}|_{X \times t}$  is  $\sigma$ -semistable of class v for  $t \in T$ . This defines a stack  $\mathfrak{M}_{\sigma}(v)$ .

## Theorem (Lieblich, Toda, Alper-Halpern-Leistner-Heinloth, ...)

Under mild assumptions,  $\mathfrak{M}_{\sigma}(v)$  is an algebraic stack admitting a proper good moduli space  $M_{\sigma}(v)$ .

#### Question

Describe the moduli spaces  $M_{\sigma}(v)$ .

## Wall-and-chamber

Usually, there is a special  $\sigma_0 \in \operatorname{Stab}(X)$  such that  $M_{\sigma_0}(v)$  is well-understood: large volume limit, geometric chamber. How to relate  $M_{\sigma}(v)$  and  $M_{\sigma_0}(v)$ ?

## Wall-and-chamber

Usually, there is a special  $\sigma_0 \in \operatorname{Stab}(X)$  such that  $M_{\sigma_0}(v)$  is well-understood: large volume limit, geometric chamber. How to relate  $M_{\sigma}(v)$  and  $M_{\sigma_0}(v)$ ?

## Theorem (Bridgeland, 2008)

There is a wall-and-chamber decomposition on  $\mathrm{Stab}(X)$ : a collection of walls  $\{W_i\}$ , dividing  $\mathrm{Stab}(X)$  into chambers. If  $\sigma, \sigma'$  lie in the same chamber, then  $M_{\sigma}(v) = M_{\sigma'}(v)$ .

### Wall-and-chamber

Usually, there is a special  $\sigma_0 \in \operatorname{Stab}(X)$  such that  $M_{\sigma_0}(v)$  is well-understood: large volume limit, geometric chamber. How to relate  $M_{\sigma}(v)$  and  $M_{\sigma_0}(v)$ ?

### Theorem (Bridgeland, 2008)

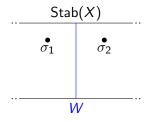
There is a wall-and-chamber decomposition on Stab(X): a collection of walls  $\{W_i\}$ , dividing Stab(X) into chambers. If  $\sigma, \sigma'$ lie in the same chamber, then  $M_{\sigma}(v) = M_{\sigma'}(v)$ .

#### Strategy:

- **1** Pick a path  $\sigma_t$  from  $\sigma_0$  to  $\sigma_1 = \sigma$ .
- Analyze what happens at each wall.

# At a (simple) wall

Each wall is associated to a decomposition v = u + w.



- On  $\sigma_1$ :  $\mu_1(u) < \mu_1(w)$ , only  $0 \to U \to E_1 \to W \to 0$  allowed.
- On  $\sigma_2$ :  $\mu_2(u) > \mu_2(w)$ , only  $0 \to W \to E_2 \to U \to 0$  allowed.

Upshot: To go from  $M_{\sigma_1}$  to  $M_{\sigma_2}$  we remove the  $\{E_1\}$  and add the  $\{E_2\}$ .

Technical issue: How to describe this at the level of schemes:

- For each  $U \in M_{\sigma}(u)$ ,  $W \in M_{\sigma}(w)$ , look at  $\mathbb{P} \operatorname{Ext}^{1}(U, W)$ . This can often be constructed in families.
- For each irreducible component  $N \subset M_{\sigma_1}(v)$ : blow-up the destabilized locus, perform an elementary modification.
- Glue the pieces appropriately.

## Tramel–Xia

Consider  $f\colon S\to T$  contracting a (-n)-curve. Tramel–Xia constructed stability conditions  $\overline{\sigma}_{\beta,f^*\eta}$ 

### Tramel–Xia

Consider  $f\colon S\to T$  contracting a (-n)-curve. Tramel–Xia constructed stability conditions  $\overline{\sigma}_{\beta,f^*\eta}$ 

#### **Fact**

There is a single wall passing through  $\overline{\sigma}_{\beta,f^*\eta}$  with respect to v = [pt].

On one side: geometric chamber

$$0 \to \mathscr{O}_{C} \to \mathscr{O}_{p} \to \mathscr{O}_{C}(-1)[1] \to 0.$$

#### Tramel-Xia

Consider  $f: S \to T$  contracting a (-n)-curve. Tramel–Xia constructed stability conditions  $\overline{\sigma}_{\beta,f^*\eta}$ 

#### **Fact**

There is a single wall passing through  $\overline{\sigma}_{\beta,f^*\eta}$  with respect to v = [pt].

On one side: geometric chamber

$$0 \to \mathscr{O}_{\mathcal{C}} \to \mathscr{O}_{\mathcal{P}} \to \mathscr{O}_{\mathcal{C}}(-1)[1] \to 0.$$

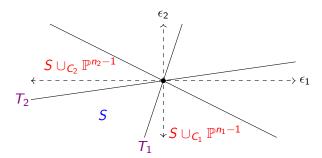
So, on the other side:

$$0 \to \mathscr{O}_{\mathcal{C}}(-1)[1] \to \mathcal{E}' \to \mathscr{O}_{\mathcal{C}} \to 0.$$

These are parametrized by  $\mathbb{P}\operatorname{Ext}^2(\mathscr{O}_C,\mathscr{O}_C(-1))\cong\mathbb{P}^{n-1}$ .

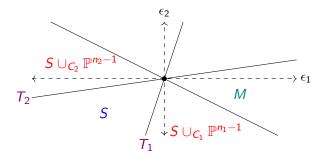
## Intersecting curves

Now, assume that  $f\colon S\to T$  contracts two smooth, rational curves  $C_1,\,C_2$  intersecting on a point. We construct stability conditions  $\sigma_{\epsilon_1,\epsilon_2}$  by deforming  $\overline{\sigma}_{\beta,f^*\eta}$ .



## Intersecting curves

Now, assume that  $f \colon S \to T$  contracts two smooth, rational curves  $C_1, C_2$  intersecting on a point. We construct stability conditions  $\sigma_{\epsilon_1, \epsilon_2}$  by deforming  $\overline{\sigma}_{\beta, f^*\eta}$ .



What about the other chambers?



# Theorem (V., 2025)

The moduli space M has three irreducible components: S,  $\mathrm{Bl}_{pt}\mathbb{P}^{n_1-1}$ , and  $\mathbb{P}^{n_1+n_2-3}$ , glued as follows:

- The exceptional divisor  $E \subset \mathrm{Bl}_{pt}\mathbb{P}^{n_1-1}$  glues as a linear subspace of  $\mathbb{P}^{n_1+n_2-3}$ .
- The curve  $C_1 \in S$  glues in  $\mathrm{Bl}_{pt}\mathbb{P}^{n_1-1}$  as the strict transform of a rational normal curve passing through the blown-up point.
- The curve  $C_2 \in S$  glues in  $\mathbb{P}^{n_1+n_2-1}$  as a rational normal curve in a complementary subspace of E.







Figure: Irreducible components for  $n_1 = n_2 = 3$ .

## A subtle point

So far: a moduli space M, together with a map  $M \to M_{\sigma}(v)$ , bijective on closed points. How to decide whether this is an isomorphism?

## A subtle point

So far: a moduli space M, together with a map  $M \to M_{\sigma}(v)$ , bijective on closed points. How to decide whether this is an isomorphism?

If  $M_{\sigma}(v)$  is *reduced*, this is easy: suffices to check  $M \to M_{\sigma}(v)$  induces isomorphisms on tangent vectors. Upshot: need to understand local structure.

# Deformation theory I

Start by looking at the stack  $\mathfrak{M}_{\sigma}(v)$ . We want to understand infinitesimal deformations of  $E \in \mathrm{D}^b(X)$   $\sigma$ -semistable.

### Proposition (Lieblich, 2006)

Assume that E is gluable. Then:

- Automorphisms:  $Aut(E) \subset Hom(E, E)$ .
- Tangent space:  $Ext^1(E, E)$ .
- Obstruction space:  $Ext^2(E, E)$ .

## Deformation theory I

Start by looking at the stack  $\mathfrak{M}_{\sigma}(v)$ . We want to understand infinitesimal deformations of  $E \in \mathrm{D}^b(X)$   $\sigma$ -semistable.

### Proposition (Lieblich, 2006)

Assume that E is gluable. Then:

- Automorphisms:  $Aut(E) \subset Hom(E, E)$ .
- Tangent space:  $Ext^1(E, E)$ .
- Obstruction space:  $Ext^2(E, E)$ .

If  $\operatorname{Ext}^2(E,E)=0$ , this is enough to understand the local picture. In general: deformations are controlled by a formal map

$$\kappa \colon \widehat{\operatorname{Ext}^1(E,E)} \to \widehat{\operatorname{Ext}^2(E,E)}.$$

## Differential graded Lie algebras

The map  $\kappa$  is determined by the differential graded Lie algebra  $R \operatorname{Hom}(E, E)$ .

# Differential graded Lie algebras

The map  $\kappa$  is determined by the differential graded Lie algebra  $R \operatorname{Hom}(E, E)$ .

How to compute it? Various options:

- Replace E with a complex of injectives I<sup>•</sup>; look at  $Hom(I^{\bullet}, I^{\bullet}).$
- Dolbeault resolution.

In our case: Čech cocycles.

## Deformation theory II

So far: local structure of the stack  $\mathfrak{M}_{\sigma}(v)$ . How do we go back to the algebraic space  $M_{\sigma}(v)$ ?

# Deformation theory II

So far: local structure of the stack  $\mathfrak{M}_{\sigma}(v)$ . How do we go back to the algebraic space  $M_{\sigma}(v)$ ?

Idea (Luna, Alper-Hall-Rydh): "étale slice"

$$p \in M$$
  $\longleftrightarrow$   $E \in \mathrm{D}^b(X)$  polystable

Local structure 
$$\longleftrightarrow$$
  $R \operatorname{Hom}(E, E)$ 

$$\hat{\mathcal{O}}_{M,p} \longleftrightarrow (\mathbb{C}[[\mathsf{Ext}^1(E,E)]]/I)^{\mathsf{Aut}(E)}$$

## Proposition (V., 2025)

In the previous setup, let  $E \in D^b(S)$  be the object corresponding to  $p = \mathbb{P}^{n_1 + n_2 - 3} \cap S \cap \mathrm{Bl}_{pt} \mathbb{P}^{n_1 - 1} \subset M$ . Then

$$\hat{\mathscr{O}}_{M,p} \cong \frac{\mathbb{C}[[p_1,\ldots,p_{n_1-2},q_1,\ldots,q_{n_2-1},r]]}{(p_1q_1r,\ldots,p_{n_1-2}q_1r,q_2r,\ldots,q_{n_2-1}r)}.$$

## Proposition (V., 2025)

In the previous setup, let  $E \in D^b(S)$  be the object corresponding to  $p = \mathbb{P}^{n_1 + n_2 - 3} \cap S \cap \mathrm{Bl}_{pt} \mathbb{P}^{n_1 - 1} \subset M$ . Then

$$\hat{\mathcal{O}}_{M,p} \cong \frac{\mathbb{C}[[p_1,\ldots,p_{n_1-2},q_1,\ldots,q_{n_2-1},r]]}{(p_1q_1r,\ldots,p_{n_1-2}q_1r,q_2r,\ldots,q_{n_2-1}r)}.$$

In particular: M is reduced at p. Here  $\widehat{\mathcal{O}}_{M,p}$  is not cut out by quadrics!

## Future directions

- Sharp conditions for singularities on T.
- What about the rest of singularities?
- Relation with stability conditions on T.

Thank you!